z-logo
Premium
A shared mechanism for lipid‐ and β‐subunit‐coordinated stabilization of the activated K + channel voltage sensor
Author(s) -
Choi Eun,
Abbott Geoffrey W.
Publication year - 2010
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.09-145219
Subject(s) - biophysics , transmembrane domain , chemistry , voltage clamp , lipid bilayer , membrane potential , transmembrane protein , ion channel , extracellular , biochemistry , membrane , biology , receptor
The low‐dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage‐sensing fourth transmembrane domain (S4) of voltage‐gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho‐head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K + channel α subunit exhibits predominantly constitutive activation when in complexes with transmembrane β subunits, MinK‐related peptide (MiRP) 1 ( KCNE2 ) or MiRP2 ( KCNE3 ). Here, using a 2‐electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1‐MiRP2 constitutive activation. Double‐mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2–D54 and KCNQ1–R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor.—Choi, E., Abbott, G. W. A shared mechanism for lipid‐ and β‐subunit‐coordinated stabilization of the activated K + channel voltage sensor. FASEB J. 24, 1518‐1524 (2010). www.fasebj.org

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here