Premium
A novel eGFP‐expressing immunodeficient mouse model to study tumor‐host interactions
Author(s) -
Niclou Simone P.,
Danzeisen Claude,
Eikesdal Hans P.,
Wiig Helge,
Brons Nicolaas H. C.,
Poli Aurélie M. F.,
Svendsen Agnete,
Torsvik Anja,
Enger Per Øyvind,
Terzis Jorge A.,
Bjerkvig Rolf
Publication year - 2008
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.08-109611
Subject(s) - green fluorescent protein , colocalization , confocal microscopy , biology , microbiology and biotechnology , flow cytometry , cell sorting , gene , biochemistry
A NOD/Scid mouse expressing enhanced green fluorescent protein (eGFP) is described, in which human and mouse tumors marked with red fluorescent protein can be established in vivo, both at subcutaneous and orthotopic locations. Using light microscopy as well as multiphoton confocal microscopy techniques, we visualized in detail the intricate colocalization of tumor and host cells in situ. Moreover, using fluorescence‐activated cell sorting (FACS), we were able to completely separate the host cells from the tumor cells, thus providing a system for detailed cellular and molecular analysis of tumor‐host cell interactions. The fact that tumor and host cells can be reliably identified also allowed us to detect double‐positive cells, possibly arising from cell fusion events or horizontal gene transfer. Similarly, the model can be applied for the detection of circulating metastatic cells and for detailed studies on the vascular compartments within tumors, including vasculogenic mimicry. Thus, the model described should provide significant insight into how tumor cells communicate with their microenvironment.—Niclou, S. P., Danzeisen, C., Eikesdal, H. P., Wiig, H., Brons, N. H. C., Poli, A. M. F., Svendsen, A., Torsvik, A., Enger, P. Ø., Terzis, J. A., Bjerkvig, R. A novel eGFP‐expressing immunodeficient mouse model to study tumor‐host interactions. FASEB J. 22, 3120–3128 (2008)