Premium
Apomorphine‐induced activation of dopamine receptors modulates FGF‐2 expression in astrocytic cultures and promotes survival of dopaminergic neurons
Author(s) -
Li Aiqun,
Guo Hong,
Luo Xiaoying,
Sheng Jiansong,
Yang Shuo,
Yin Yanqing,
Zhou Jianwei,
Zhou Jiawei
Publication year - 2006
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.05-5510fje
Subject(s) - dopaminergic , neurotrophic factors , glial cell line derived neurotrophic factor , agonist , endocrinology , medicine , dopamine , chemistry , quinpirole , receptor , dopamine receptor d2 , microbiology and biotechnology , dopamine receptor , biology , biochemistry
Apomorphine (APO), a potent D1/D2 dopamine receptor agonist, is currently used as an antiparkinsonian drug. We have shown previously that APO stimulates synthesis and release of multiple trophic factors, such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), in both mesencephalic and striatal neurons, thereby effectively preventing dopaminergic neuron loss in vitro. The present study was designed to investigate the effects of APO on fibroblast growth factor-2 (FGF-2) expression and regulation in astrocytes, and furthermore, to identify signaling mechanisms underlying these effects. Here, we show that FGF-2 expression is robustly induced in cultured astrocytes in response to APO. FGF-2 expression was proportional to APO concentration and time-dependent. Conversely, treatment with S-APO, a derivative of R-APO lacking DA receptor agonist activity, did not alter FGF-2 levels. APO treatment resulted in enhanced cytosol FGF-2 immunoreactivity, export of high MW forms of FGF-2 to the cytoplasm from the nucleus and increased extracellular release of FGF-2. Interestingly, both high and low MW forms of FGF-2 were detectable in conditioned medium of APO-treated cultures. This APO-induced effect was correlated with activation of D1 and D2 receptors, as it could be either mimicked by dopamine receptor agonists (SKF38393, quinpirole) or partially blocked by antagonists (SCH23390, SKF83566, haloperidol). Activation of the D1 receptor preferentially increased PKA activity, whereas activation of the D2 receptor only promoted phosphorylation of MAPK. Importantly, APO-modulated FGF-2 expression was independent of Akt/phosphoinositide 3-kinase signaling. These data suggest that APO can enhance biosynthesis and release of FGF-2 through activation of dopamine receptors in striatal astrocytes. Both cAMP/PKA and MEK/MAPK signaling cascades are major steps mediating this process.