Premium
Mouse intestinal cryptdins exhibit circadian oscillation
Author(s) -
Froy Oren,
Chapnik Nava,
Miskin Ruth
Publication year - 2005
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.05-4216fje
Subject(s) - zeitgeber , biology , cecum , circadian rhythm , immunology , microbiology and biotechnology , endocrinology , circadian clock , ecology
The innate immunity utilizes a plethora of antibacterial polypeptides, known as defensins, to combat ingested bacteria. Mouse enteric defensins (cryptdins) are produced and secreted constitutively but are overexpressed in instances of infection and/or inflammation. Our objective was to determine whether the biological clock plays a role in cryptdin expression under healthy conditions. Analysis of cryptdin 1 and cryptdin 4 expression in the ileum and jejunum of the small intestine of FVB/N mice around the circadian cycle revealed oscillation that peaked at the end of the dark phase. To eliminate the possibility that cryptdin oscillation stems from food intake, we analyzed cryptdin expression under fasting conditions and found oscillation but with a 3 h phase‐shift. Comparison of cryptdin expression in two mouse strains (C57BL/6 vs. FVB/N) revealed higher levels in C57BL/6, a mouse strain that is highly susceptible to enteric infection, due, most likely, to impaired cryptdin maturation. The results of this study indicate the involvement of the biological clock in regulating cryptdin expression in the small intestine and reinforce the capacity of food to act as a Zeitgeber (synchronizer). With the assumption of similar control in humans, our results may imply that defensin expression peaks during the day.