z-logo
Premium
A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage
Author(s) -
Andersen Jannik N.,
Jansen Peter G.,
Echwald S⊘ren M.,
Mortensen Ole H.,
Fukada Toshiyuki,
Del Vecchio Robert,
Tonks Nicholas K.,
M⊘ller Niels Peter H.
Publication year - 2004
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.02-1212rev
Subject(s) - pseudogene , genetics , gene , biology , protein tyrosine phosphatase , locus (genetics) , genome , exon , human genome , computational biology , signal transduction
The protein tyrosine phosphatases (PTPs) are now recognized as critical regulators of signal transduction under normal and pathophysiological conditions. In this analysis we have explored the sequence of the human genome to define the composition of the PTP family. Using public and proprietary sequence databases, we discovered one novel human PTP gene and defined chromosomal loci and exon structure of the additional 37 genes encoding known PTP transcripts. Direct orthologs were present in the mouse genome for all 38 human PTP genes. In addition, we identified 12 PTP pseudogenes unique to humans that have probably contaminated previous bioinformatics analysis of this gene family. PCR amplification and transcript sequencing indicate that some PTP pseudogenes are expressed, but their function (if any) is unknown. Furthermore, we analyzed the enhanced diversity generated by alternative splicing and provide predicted amino acid sequences for four human PTPs that are currently defined by fragments only. Finally, we correlated each PTP locus with genetic disease markers and identified 4 PTPs that map to known susceptibility loci for type 2 diabetes and 19 PTPs that map to regions frequently deleted in human cancers. We have made our analysis available at http://ptp.cshl.edu or http://science.novonordisk.com/ptp and we hope this resource will facilitate the functional characterization of these key enzymes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here