z-logo
Premium
Maternal Low Protein Diet Reduces Birth Weight And Increases Brown Adipose Tissue UCP‐1 and FNDC5 Gene Expression in Male Neonatal Sprague‐Dawley Rats
Author(s) -
Claycombe Kate,
VomhofDeKrey Emilie,
Roemmich James,
Rhen Turk,
Ghribi Othman
Publication year - 2015
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fasebj.29.1_supplement.749.1
Subject(s) - thermogenesis , offspring , brown adipose tissue , endocrinology , medicine , biology , thermogenin , prdm16 , uncoupling protein , in utero , fetus , adipose tissue , pregnancy , genetics
Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT thermogenesis and BW of offspring in‐utero is not yet known. We fed obese‐prone Sprague‐Dawley dams 8% low protein (LP) or 20% normal protein (NP) diets for 3 weeks prior to breeding and through pregnancy. BW and gene expression of interscapular BAT (iBAT) thermogenic markers were measured in male fetal (gestation day 18) and neonatal (day 0 or 1) offspring. BW of neonatal LP males was lower than NP males but no difference was observed in females. Gene expression of thermogenic factors UCP‐1 and UCP‐3 and transcription factors PRDM16 and PPARa in iBAT were 2‐ to 6‐fold greater in LP than NP male neonatal offspring. FNDC5, a precursor of irisin and activator of thermogenesis, was expressed 2‐fold greater in neonatal LP iBAT than NP males. However, fetal iBAT UCP‐1, PRDM16, PPARa and irisin mRNA did not differ between LP and NP groups. Maternal LP diet had no effects on placental irisin and UCP‐2 expression. These results suggest that prenatal protein restriction increases the risk for low BW through mechanisms affecting full‐term offspring iBAT thermogenesis but not greatly altering fetal iBAT or placental thermogenesis. This work was supported by USDA Agricultural Research Service Project #3062‐51000‐052‐00D.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here