Premium
ULK1‐dependent Mitophagy Is Essential for Maintaining Cardiac Function during High Fat Diet‐induced Diabetic Cardiomyopathy
Author(s) -
Tong Mingming,
Saito Toshiro,
Zhai Peiyong,
Oka Shinichi,
Sadoshima Junichi
Publication year - 2019
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fasebj.2019.33.1_supplement.660.13
Subject(s) - mitophagy , medicine , endocrinology , ulk1 , lipotoxicity , diabetic cardiomyopathy , cardiomyopathy , autophagy , pink1 , biology , muscle hypertrophy , mitochondrion , cardiac function curve , diabetes mellitus , heart failure , insulin resistance , microbiology and biotechnology , protein kinase a , kinase , ampk , apoptosis , biochemistry
Diabetic patients develop cardiomyopathy characterized by hypertrophy, diastolic dysfunction, lipotoxicity, and mitochondrial dysfunction. How mitochondrial function is regulated in diabetic cardiomyopathy remains poorly understood. Mice were fed either a normal diet (ND) or a high fat diet (HFD, 60 kcal % fat). Mitophagy, evaluated with Mito‐Keima, was increased after 3 weeks of HFD feeding (mitophagy area: 8.3% per cell with ND and 12.4% with HFD) and continued to increase after 20 weeks (p<0.05). Although we have shown recently that mitophagy during the early phase of HFD feeding is mediated by Atg7‐dependent mechanisms, the mechanisms mediating mitophagy in the heart during the chronic phase of HFD feeding remain poorly understood. Phosphorylation of ULK1 was activated and Rab9 protein level was increased in the mitochondrial fraction within 20 weeks of HFD consumption (p<0.05). By isolating adult cardiomyocytes from GFP‐Rab9 transgenic mice fed HFD, we discovered that mitochondria were sequestrated by Rab9‐positive ring‐like structures. Since ULK1 regulates Rab9‐dependent mitophagy, we fed ULK1 cKO mice with HFD for 20 weeks. In wild type (WT) mice, cardiac hypertrophy and diastolic dysfunction (EDPVR = 0.051±0.009 in ND and 0.115±0.006 in HFD) were induced after 20 weeks of HFD feeding (p<0.05). By crossing Tg‐Mito‐Keima mice with ULK1 cKO mice, we found that downregulation of ULK1 impaired mitophagy in response to ND or 20 weeks of HFD consumption (p<0.05). Deletion of ULK1 exacerbated diastolic dysfunction (EDPVR=0.115±0.006 in WT and 0.162±0.021 in ULK1 cKO, p<0.05) and even induced systolic dysfunction (ESPVR=22.74±2.13 in WT and 16.78±2.12 in ULK1 cKO, p<0.05) during HFD feeding. Electron microscopic analyses indicated that the mitochondrial cristae structure was disrupted more severely in ULK1 cKO mice with HFD feeding than control mice (p<0.05). In summary, genetic disruption of ULK1‐Rab9‐dependent mitophagy during the chronic phase of HFD feeding exacerbates mitochondrial dysfunction, thereby facilitating the development of diabetic cardiomyopathy. ULK1‐Rab9‐dependent mitophagy serves as an essential quality control mechanism for cardiac mitochondria during HFD feeding. Support or Funding Information The project was supported by AHA and NIH (5R01HL138720‐02). This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal .