z-logo
Premium
Selective Reductions in Pulmonary Artery Pressure Lowers Sympathetic Neural Activity in Healthy Humans at High Altitude
Author(s) -
Simpson Lydia L,
Steele Andrew,
Meah Victoria L,
Thapamagar Suman,
Gasho Christopher,
Drane Aimee,
Oliver Samuel J,
Tymko Michael M,
Ainslie Philip N,
Steinback Craig D,
Stembridge Mike,
Moore Jonathan P
Publication year - 2019
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fasebj.2019.33.1_supplement.562.6
Subject(s) - microneurography , medicine , pulmonary artery , blood pressure , cardiology , anesthesia , pulmonary hypertension , baroreceptor , sympathetic nervous system , vasodilation , heart rate , baroreflex
Chronically elevated sympathetic neural activity is a characteristic of many disease states. Tonic chemoreflex activation has been implicated in the development of sympathetic overactivity; however, other reflexes may also contribute. For example, in an animal model, stimulation of pulmonary baroreceptors induces a reflex increase in sympathetic neural activity. In humans, pulmonary pressure has been shown to be related to basal sympathetic activity in pulmonary hypertension; however a critical step in determining a causal link is to establish whether changing pulmonary pressure alters sympathetic outflow. In this pilot study, we exposed thirteen healthy humans (5 females, 28 [ ± 7] years) to high altitude hypoxia (HA; 4383m), a setting known to increase both pulmonary pressure and sympathetic activation, before selectively lowering pulmonary pressure via inhalation of the pulmonary vasodilator nitric oxide. Muscle sympathetic nerve activity (MSNA; Microneurography), blood pressure (BP; Photoplethysmography), heart rate (HR; Electrocardiogram), and peripheral oxygen saturation (SPO 2 ; Pulse oximetry) were continually measured during ambient air breathing (Amb) and during a 6‐minute inhalation of nitric oxide (iNO; 40ppm in 21% O 2 ). Pulmonary artery systolic pressure (PASP), pulmonary vascular resistance (PVR) and stroke volume (SV) were determined via cardiac ultrasound. iNO reduced PASP (−23 ± 12%) and PVR (−21 ± 16%) compared to Amb (Table 1). iNO also reduced MSNA burst frequency (−18 ± 18%), burst incidence (−16 ± 17%) and total activity (−21 ± 20%) compared to Amb. MSNA changes during iNO were not related to changes in SPO 2 (r = −0.16, P = 0.61) or MAP (r = −0.28, P = 0.35). Our data demonstrate that selectively reducing pulmonary pressure reduces sympathetic nerve activity in healthy humans; therefore, this provides evidence for a causal link in the relationship between pulmonary pressure and basal sympathetic activity. Further investigation is warranted to establish whether elevated pulmonary pressure is a mechanism contributing to chronically elevated sympathetic outflow in disease. Support or Funding Information This study was supported by the Natural Sciences and Engineering Research Council of Canada and a Canada Research Chair in Cerebrovascular Physiology grant. This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here