z-logo
Premium
Painting Chromatin with Synthetic Protein Chemistry
Author(s) -
Muir Tom W.
Publication year - 2018
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fasebj.2018.32.1_supplement.474.4
Subject(s) - structural biology , protein chemistry , computational biology , function (biology) , chromatin , chemistry , biology , microbiology and biotechnology , biochemistry , dna
Understanding protein function is at the heart of experimental biology. Perhaps one of grandest contemporary challenges in this area is to catalogue and then functionally characterize protein posttranslational modifications (PTMs). Modern analytical techniques reveal that most, if not all, proteins are modified at some point; it is nature's way of imposing functional diversity on a polypeptide chain. Understanding the structural and functional consequences of all these PTMs is a devilishly hard problem. While standard molecular biology methods are of limited utility in this regard, modern protein chemistry has provided powerful methods that allow the detailed interrogation of protein PTMs. In this lecture I will highlight how these biochemical and cell‐based tools can be used to probe a series of problems in chromatin biology. This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here