
Mapping of Crown Rust (Puccinia coronataf. sp.avenae) Resistance GenePc54and a Novel Quantitative Trait Locus Effective Against Powdery Mildew (Blumeria graminisf. sp.avenae) in the Oat (Avena sativa) Line Pc54
Author(s) -
Belayneh Admassu-Yimer,
Kathy Esvelt Klos,
Irene Griffiths,
A. A. Cowan,
Catherine Howarth
Publication year - 2022
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-10-21-0445-r
Subject(s) - powdery mildew , biology , genetics , blumeria graminis , quantitative trait locus , locus (genetics) , plant disease resistance , molecular marker , marker assisted selection , candidate gene , gene , botany
The Pc54 oat line carries the crown rust resistance gene ‘Pc54’ and an unknown gene effective against powdery mildew. In this study two recombinant inbred line populations were developed to identify the genomic locations of the two genes and producing lists of molecular markers with a potential for marker assisted selection. The RILs and parents were phenotyped for crown rust and powdery mildew in a controlled environment. They were also genotyped using the 6K Illumina Infinium iSelect oat SNP chip. Multiple interval mapping placed Pc54 on the linkage group Mrg02 (chromosome 7D) and the novel powdery mildew QTL ‘QPm.18’ on Mrg18 (chromosome 1A) both in the mapping and validating population. A total of nine and 31 significant molecular markers were identified linked with the Pc54 gene and QPm.18, respectively. Reactions to crown rust inoculations have justified separate identity of Pc54 from other genes and QTL that have previously been reported on Mrg02 except for ’qPCRFd’. Pm3 is the only powdery mildew resistance gene previously mapped on Mrg18. However, the pm3 differential line, Mostyn was susceptible to the powdery mildew race used in this study suggesting that Pm3 and QPm.18 are different genes. Determining the chromosomal locations of Pc54 and QPm.18 is helpful for better understanding the molecular mechanism of resistance to crown rust and powdery mildew in oats. Furthermore, SNPs and SSRs that are closely linked with the genes could be valuable for developing PCR based molecular markers and facilitating the utilization of these genes in oat breeding programs.