z-logo
open-access-imgOpen Access
First Report of Postharvest Fruit Rot on Passion Fruit (Passiflora edulis) Caused by Lasiodiplodia theobromae in Mainland China
Author(s) -
Wu Zhang,
Xue Li Niu,
Jin Yu Yang
Publication year - 2021
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis-06-20-1346-pdn
Subject(s) - biology , pycnidium , conidium , potato dextrose agar , lasiodiplodia theobromae , passiflora , horticulture , internal transcribed spacer , botany , fruit rot , intergenic region , inoculation , agar , phylogenetic tree , gene , biochemistry , genetics , genome , bacteria
As an economically important tropical and subtropical fruit crop, passion fruit ( Passiflora edulis Sims) is widely planted in many provinces of southern China. In April 2017, postharvest fruit rot was observed on 15% to 25% of passion fruit in several fruit markets of Zhanjiang City in Guangdong Province. Initial disease symptoms on infected fruit were irregular, brown, water-soaked lesions, which enlarged into large black and sunken patches. Lesions were usually covered with an abundance of little black dots (pycnidia) and black-gray hyphae. For the pathogen isolation, fifteen symptomatic fruit were randomly collected from three local markets. Fourteen single-spore fungal isolates with similar morphology ware isolated from the infected tissues. Two isolates (ZW 49-1 and ZW 50-1) were randomly selected to further study. The colonies on PDA were initially greyish-white and became dark-gray with age. Abundant globular and irregular pycnidia were observed after incubation at 25 °C for 3 weeks. The conidia of the fungus were initially hyaline, unicellular, apex rounded, thick-walled, and ellipsoid, becoming dark brown, bicellular with longitudinal striations at maturity, 26.4 ± 2.5 × 13.4 ± 1.2 μm (n = 50). The morphology of the fungus resembled Lasiodiplodia theobromae (Pat.) Griff. & Maubl. (Phillips et al. 2013). To confirm species identification, the partial internal transcribed spacer (ITS) region of rDNA, translation elongation factor-alpha (EF1-α) and β-tubulin (TUB) gene were amplified from genomic DNA of the two isolates with the ITS1/ITS4, EF1-688F/EF1-986R, and Bt2a/Bt2b primers, respectively (Glass and Donaldson 1995; Alves et al. 2008; White et al. 1990). Base on the BLASTn analysis, the ITS (MT644473, MT644474), EF1-α (MT649210, MT649211) and TUB (MT649212, MT649213) sequences of both isolates were 100%, 99% and 100% similarity to the L. theobromae CBS 164.96 ex-type sequences in the NCBI database (AY640255, AY640258, and KU887532, respectively) (Phillips et al. 2013). For pathogenicity test, asymptomatic passion fruit were previously disinfested in 0.5 % sodium hypochlorite and superficially wounded with a sterile needle. Five-mm-diameter plugs with mycelial taken from 5-day-old PDA colonies were placed on the wounds. Sterile PDA plugs were used as negative controls. Each treatment had five replicates and the test was repeated twice. Fruit were maintained in plastic boxes to keep at 25°C for one week. One week after inoculation, gray mycelia had covered a majority of the fruit surface and caused a black, sunken rot. The inoculated fungus was reisolated and confirmed as L. theobromae by morphological characteristics. The mock inoculated fruit remained asymptomatic. The occurrence of fruit rot on passion fruit caused by L. theobromae was reported in Taiwan, China recently (Huang et al., 2019). To our knowledge, this is the first report of L. theobromae causing postharvest fruit rot on passion fruit in the Chinese mainland.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here