z-logo
open-access-imgOpen Access
First Report of Postharvest Fusarium Rot of Mandarin (Citrus reticulata ‘Kinnow’) Caused by Fusarium equiseti in Pakistan
Author(s) -
Anam Moosa,
Ayaz Farzand,
Sajid Aleem Khan,
Tanvir Ahmad,
Hafiz Muhammad Usman Aslam,
Maryam Shafique,
Saba Saeed,
Ashir Masroor,
Sohail Akhtar
Publication year - 2021
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis-03-21-0513-pdn
Subject(s) - postharvest , mandarin chinese , agriculture , biology , christian ministry , horticulture , fusarium , library science , political science , law , linguistics , philosophy , ecology , computer science
Citrus reticulata cv. 'Kinnow' mandarin is the most popular and widely grown fruit crop in Pakistan. During 2017, a survey was conducted to the local citrus fruit markets of Faisalabad, Pakistan. Citrus fruits (n=50) exhibiting stem end rot and fruit rot were collected with 15% disease incidence. The stem end region showed light to dark brown lesions and white fungal growth was also observed in the severely infected fruit. Infected fruit were excised into 2mm2 segments, surface disinfected with 1% NaClO, rinsed with sterilized water and dried. Later, these tissues were placed on potato dextrose agar (PDA) medium and subsequently incubated at 25 °C. Purified isolates produced white colonies with beige pigmentation. The frequency of fungal isolation was 47%. Microscopic observations revealed that macroconidia (n=50) had 5 to 6 septations, with a prominent dorsiventral curvature, tapered and elongated apical cell, and a foot shape basal cell. The macroconidia were measuring 22 to 45 × 2.9 to 4.3 µm with an average of 31 × 3.6 µm. However, microconidia were not observed. Chlamydospores were globose, intercalary, solitary, or in pairs, appearing in chains (Leslie and Summerell 2006). For molecular identification, DNA was extracted from all isolates. The internal transcribed spacer region (ITS) ITS1/4 (White et al. 1990), translation elongation factor-1 alpha (TEF) EF1/2 (O'Donnell et al. 1998), and RNA polymerase II subunit 1 (RPB1) (O'Donnell et al. 2013) were amplified using PCR and the product was subsequently sequenced. Based on BLAST analysis, the isolate was identified as Fusarium equiseti (FUS-21). The sequences of the representative isolate FUS-21 were deposited in the GenBank with accession numbers (ITS, MH581300), (TEF, MK203749), and (RPB1, MW596599) showing more than 99% similarity with ITS accession GQ505683, TEF accession GQ505594, and 100% to RPB1 accession JX171481. To determine the pathogenicity, 40 healthy surface disinfested citrus fruit were taken. The fruit were inoculated by creating artificial wounds on the surface with a sterilized needle and 10 μL of 105 spores/mL was deposited in the wounds. In case of control fruit were inoculated with 10 μL sterilized distilled water only, and incubated at 25 °C. All fruit inoculated with the putative pathogen, developed symptoms like the original fruit from which they were isolated. The pathogenicity test was repeated twice. Visible white mycelium appeared at the stem end region and the fruits became dried as the infection progressed. However, the control fruit remained asymptomatic. The pathogen was re-isolated from infected fruit and identified based on morphometric and molecular analysis. Previously we have reported F. oxysporum causing citrus fruit rot in Pakistan (Moosa et al. 2020). This is the first report of F. equiseti causing post-harvest rot of citrus fruits in Pakistan. Kinnow is an important fruit crop of Pakistan with huge export value the management of Fusarium rot is quite important to save the loss of fresh produce.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here