z-logo
open-access-imgOpen Access
ATAC-Seq Reveals the Landscape of Open Chromatin and cis-Regulatory Elements in thePhytophthora sojaeGenome
Author(s) -
Zhichao Zhang,
Long Lin,
Han Chen,
Wenwu Ye,
Suomeng Dong,
Xiaobo Zheng,
Yuanchao Wang
Publication year - 2022
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi-11-21-0291-ta
Subject(s) - chia pet , chromatin , biology , genetics , gene , transcription factor , promoter , phytophthora sojae , chip sequencing , genome , computational biology , nucleosome , gene expression
Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom