z-logo
Premium
Reduction of Aflatoxin and Fumonisin Contamination in Yellow Corn by High‐Speed Dual‐Wavelength Sorting
Author(s) -
Pearson T. C.,
Wicklow D. T.,
Pasikatan M. C.
Publication year - 2004
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem.2004.81.4.490
Subject(s) - aflatoxin , mycotoxin , aspergillus flavus , fumonisin , contamination , fumonisin b1 , chemistry , mycobiota , absorbance , food science , sorting , botany , chromatography , biology , mathematics , ecology , algorithm
A high‐speed dual‐wavelength sorter was tested for removing corn contaminated in the field with aflatoxin and fumonisin. To achieve accurate sorting, single kernel reflectance spectra (500–1,700 nm) were analyzed to select the optimal pair of optical filters to detect mycotoxin‐contaminated corn during high‐speed sorting. A routine, based on discriminant analysis, was developed to select the two absorbance bands in the spectra that would give the greatest classification accuracy. In a laboratory setting, and with the kernels stationary, absorbances at 750 and 1,200 nm could correctly identify >99% of the kernels as aflatoxin‐contaminated (>100 ppb) or uncontaminated. A high‐speed sorter was tested using the selected filter pair for corn samples inoculated with Aspergillus flavus ; naturally infested corn grown in central Illinois; and naturally infested, commercially grown and harvested corn from eastern Kansas (2002 harvest). For the Kansas corn, the sorter was able to reduce aflatoxin levels by 81% from an initial average of 53 ppb, while fumonisin levels in the same grain samples were reduced an average of 85% from an initial level of 17 ppm. Similar reductions in mycotoxin levels were observed after high‐speed sorting of A. flavus inoculated and naturally mold‐infested corn grown in Illinois.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here