Premium
Effect of Wheat Bran Fiber and Bran Particle Size on Fat and Fiber Digestibility and Gastrointestinal Tract Measurements in the Rat
Author(s) -
Kahlon T. S.,
Chow F. I.,
Hoefer J. L.,
Betschart A. A.
Publication year - 2001
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem.2001.78.4.481
Subject(s) - bran , chemistry , cecum , food science , gastrointestinal tract , cellulose , feces , fiber , neutral detergent fiber , zoology , biology , biochemistry , raw material , ecology , paleontology , organic chemistry
The effect of wheat bran (AACC hard red) and bran particle size on fat and fiber digestibility and gastrointestinal tract measurements were investigated with diets containing 5.7–10.7% dietary fiber. Fifty‐six male weanling Sprague‐Dawley rats were randomly assigned to four diets containing 5% cellulose (C5); 10.5% cellulose (C10); 21.5% coarse (2 mm) wheat bran (CB); or 22.2% fine (0.5 mm) wheat bran (FB) in a sixweek study. Dietary fiber digestibilities were significantly different ( P < 0.05) among treatment diets (CB > FB > C5 > C10) but there was no effect in fat digestibility among treatments. High‐fiber diets fed to rats resulted in significantly greater wet and dry fecal weights than low‐fiber diets. Bran diets resulted in significantly higher fecal moisture than cellulose diets. Cecum lengths increased significantly with bran diets compared with cellulose diets. The CB diet resulted in significantly higher stomach weights than with cellulose diets. Stomachs were heavier and cecal lengths were greater with bran diets than with cellulose diets; however, a high‐cellulose diet resulted in increased colon weight. Except for higher fiber digestibility of coarse bran, bran particle size had no significant effects. Healthful effects of wheat bran may be associated with gastrointestinal morphology and function. Fecal bulking and decreased intestinal transit time can prevent constipation and may dilute or reduce absorption of toxic or carcinogenic metabolites, thus improving gastrointestinal health and lowering the risk of tumor development and cancer.