z-logo
Premium
Effect of Extrusion Cooking on the Primary Structure and Water Solubility of β‐Glucans from Regular and Waxy Barley
Author(s) -
Gaosong Jiang,
Vasanthan Thava
Publication year - 2000
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem.2000.77.3.396
Subject(s) - solubility , chemistry , glucan , extrusion , hordeum vulgare , food science , starch , barley flour , botany , biochemistry , wheat flour , organic chemistry , poaceae , materials science , biology , metallurgy
Water‐soluble β‐glucan from native and extrusion‐cooked barley flours of two barley cultivars, Candle (a waxy starch barley) and Phoenix (a regular starch barley), was isolated and purified. The purity of β‐glucan samples was 85–93% (w/w, dry weight basis) for Candle and 77–86% (w/w, dry weight basis) for Phoenix. The water solubility of β‐glucan (at room temperature, 25°C) in the native and extruded flours (primary solubility) was different from that of the purified β‐glucan samples (secondary solubility). The solubility of β‐glucan in the native and extruded Candle flour was substantially higher than that of β‐glucan in Phoenix. For both cultivars, β‐glucan in the extruded flours had solubility (primary solubility) values higher than in their native counterparts. The solubility of β‐glucan in the purified β‐glucan samples differed depending on the barley cultivar and the extrusion conditions employed. The glycosidic linkage profiles of purified soluble β‐glucan from native and extruded barley flours were determined in order to understand the changes in the primary structure of β‐glucan and the effect of extrusion on the β‐glucan structure‐solubility relationship.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here