Premium
Effects of Microencapsulated High‐Fat Powders on the Empirical and Fundamental Rheological Properties of Wheat Flour Doughs
Author(s) -
O'Brien C. M.,
Grau H.,
Neville D. P.,
Keogh M. K.,
Reville W. J.,
Arendt E. K.
Publication year - 2000
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem.2000.77.2.111
Subject(s) - rheology , food science , homogenization (climate) , chemistry , farinograph , globules of fat , milk fat , fat substitute , wheat flour , materials science , composite material , biodiversity , ecology , biology , linseed oil
Microencapsulated high‐fat powders are a healthy and convenient alternative to fats normally used in cereal‐based products. In powder form they are easier to use than block fat. Microencapsulation involves dispersion of the fat using homogenization. The globules are then fixed by spray‐drying. Empirical and fundamental rheological tests were conducted on doughs containing commercial vegetable fat and four microencapsulated high‐fat powders. The doughs were compared with a standard dough containing no fat. The powders contained 70% vegetable fat or milk fat. The encapsulating agent used was either sodium caseinate or whey protein concentrate (5–10%). Sucrose or lactose were also present in the powders (20–25%). The powders were manufactured at low‐ or high‐pressure homogenization. Farinograph and extensigraph tests were performed on all doughs. Dynamic oscillation tests were conducted in the linear visco‐elastic region of the dough. Addition of fat and microencapsulated high‐fat powders produced using low‐pressure homogenization reduced the complex modulus of the doughs. The results showed an increase in phase angle with incorporation of commercial fat and the microencapsulated high‐fat powders. Scanning electron microscopy was conducted to examine the effects of the additives on dough structure. This study demonstrated that microencapsulated high‐fat powders, especially powders produced using low‐pressure homogenization, had some beneficial effects on dough rheology when compared with doughs produced with commercial fat.