Premium
Ultrasonic Characterization of Unyeasted Bread Dough of Different Sodium Chloride Concentrations
Author(s) -
Koksel Filiz,
Strybulevych Anatoliy,
Page John H.,
Scanlon Martin G.
Publication year - 2014
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem-10-13-0206-cesi
Subject(s) - chemistry , bubble , sodium , attenuation , volume fraction , analytical chemistry (journal) , radius , ultrasonic sensor , volume (thermodynamics) , chromatography , thermodynamics , mechanics , optics , physics , computer security , organic chemistry , computer science , acoustics
Altering the properties of dough by reducing sodium chloride (NaCl) content affects aeration processes during mixing. The effect of NaCl concentration on the bubble size distribution (BSD) in unyeasted doughs was investigated by an ultrasonic transmission technique through analysis of frequency‐dependent ultrasonic phase velocity and attenuation coefficient. As NaCl concentration was decreased, the volume fraction of gas in the dough increased, resulting in a larger attenuation coefficient for the dough. From the peak in attenuation coefficient, estimates of the median radius and the width of the lognormal BSD in the dough were extracted, both of which were sensitive to the dough's NaCl concentration. As NaCl concentration was reduced, the bubble radius decreased and the width of the distribution increased, in accordance with expectations arising from changes in the dough's consistency. Over the course of 150 min, the radius increased (40–50%) and the width decreased (4–8%) for all dough formulations, consistent with changes in the BSD arising from disproportionation. These dynamic changes demonstrate that dough is an interesting soft material whose formulation can be manipulated to enable it to possess different BSDs; the diffusively driven evolution in these bubble sizes can be investigated noninvasively with ultrasound.