Premium
Improvement of Dry‐Fractionation Ethanol Fermentation by Partial Germ Supplementation
Author(s) -
Ramchandran Divya,
Wang Ping,
Dien Bruce,
Liu Wei,
Cotta Michael A.,
Singh Vijay
Publication year - 2015
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem-08-14-0177-r
Subject(s) - germ , chemistry , fermentation , food science , ethanol , starch , fractionation , endosperm , raw material , wheat germ , ethanol fuel , chromatography , biochemistry , organic chemistry , mathematics , mathematical analysis
Ethanol fermentation of dry‐fractionated grits (corn endosperm pieces) containing different levels of germ was studied with the dry‐grind process. Partial removal of the germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry‐milling plant were mixed with different amounts of germ (2, 5, 7, and 10% germ of the total sample) and compared with control grits (0% germ). Fermentation rates of germ‐supplemented grits (2, 5, 7, and 10% germ) were faster than control grits (0% germ). Addition of 2% germ was sufficient to achieve a high ethanol concentration (19.06% v/v) compared with control grits (18.18% v/v). Fermentation of dry‐fractionated grits (92, 95, and 97% grits) obtained from a commercial facility was also compared with ground whole corn (control). Fermentation rates were slower and final ethanol concentrations were lower for commercial grits than the control sample. However, in a final experiment, commercial grits were subjected to raw starch hydrolyzing (RSH) enzyme, resulting in higher ethanol concentrations (20.22, 19.90, and 19.49% v/v for 92, 95, and 97% grits, respectively) compared with the whole corn control (18.64% v/v). Therefore, high ethanol concentrations can be achieved with dry‐fractionated grits provided the inclusion of a certain amount of germ and the use of RSH enzyme for controlled starch hydrolysis.