Premium
Germ‐Derived FAN as Nitrogen Source for Corn Endosperm Fermentation
Author(s) -
Vidal Bernardo C.,
Johnston David B.,
Rausch Kent D.,
Tumbleson M. E.,
Singh Vijay
Publication year - 2011
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem-07-10-0099
Subject(s) - chemistry , endosperm , germ , fermentation , urea , protease , food science , free amino nitrogen , ethanol , nitrogen , incubation , yeast , ethanol fuel , biochemistry , ethanol fermentation , substrate (aquarium) , maltose , zoology , botany , sucrose , enzyme , biology , organic chemistry , microbiology and biotechnology , ecology
Corn endosperm separated by dry fractionation could exhibit poor fermentation performance due to loss of germ components beneficial for yeast growth. Inorganic nitrogen and other nutritional supplementations are used to overcome slow fermentation rates. We investigated the use of a protease in generating free amino nitrogen (FAN) from germ as an alternative to exogenous nitrogen sources. Up to 300% more FAN can be generated from germ in 6 hr of incubation with protease than without protease. Protease incubation also resulted in higher dry solids (ds) and total glucose contents in the germ hydrolyzates. During fermentation without urea addition, ethanol yields were dependent on mash FAN concentrations. Ethanol yields increased to a maximum when FAN level was 80–90 mg of FAN/100 g ds. At half the optimal FAN level (≈40 mg of FAN/100 g ds), nitrogen limitation occurred, as indicated by high residual glucose concentrations. However, germ FAN did not increase the ethanol yields compared to urea supplementation, likely because germ FAN resulted in lower substrate consumption compared to urea supplementation. Lower substrate consumption correlated to the increase in residual maltose with increase in initial FAN. Ethanol productivity in 0–24 hr of fermentation was higher with germ FAN than with urea, thus decreasing overall fermentation time.