z-logo
Premium
Structural Modification of Gluten Proteins in Strong and Weak Wheat Dough as Affected by Mixing Temperature
Author(s) -
Quayson Enoch T.,
Marti Alessandra,
Bonomi Francesco,
Atwell William,
Seetharaman Koushik
Publication year - 2016
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem-06-15-0123-r
Subject(s) - chemistry , gluten , mixing (physics) , food science , rheology , solubility , wheat flour , organic chemistry , thermodynamics , physics , quantum mechanics
The effects of temperature (≥25°C) on dough rheological properties and gluten functionality have been investigated for decades, but no study has addressed the effect of low temperature (<30°C) on gluten network attributes in flours with strong and weak dough characteristics. This study monitored changes in protein extractability in the presence and absence of reducing agents, the contents of readily accessible and SDS‐accessible thiols, and the secondary structural features of proteins in doughs from commercial hard wheat flour (HWF) and soft wheat flour (SWF) mixed at 4, 15, and 30°C. SWF mixed at 4 and 15°C showed similar mixing properties as HWF mixed at 30°C (which is the standard temperature). The effect of mixing temperature is different at the molecular level between the two flours studied. Protein features of HWF did not change as mixing temperature decreased, with the only exception being an increase in SDS‐accessible thiols. Decreasing mixing temperature for SWF caused an increase in SDS protein solubility and SDS‐accessible thiols as well as an increase in β‐turn structures at the expense of β‐sheet structures. Thus, noncovalent interactions appear to drive protein network at low temperatures (4 and 15°C), whereas covalent interactions dominate at standard mixing temperature (30°C) in doughs from both flours.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here