z-logo
Premium
Structure, Physicochemical Properties, and In Vitro Starch Digestibility of Yellow Pea Flour Modified with Different Organic Acids
Author(s) -
Waduge Renuka Nilmini,
Warkentin Thomas D.,
Donner Elizabeth,
Cao Rong,
Dan Ramdath D.,
Liu Qiang
Publication year - 2016
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cchem-03-16-0068-fi
Subject(s) - chemistry , food science , ingredient , citric acid , differential scanning calorimetry , amylose , starch , fourier transform infrared spectroscopy , nuclear chemistry , chemical engineering , physics , engineering , thermodynamics
The objective of this study was to produce a pea flour ingredient with higher slowly digestible (SDS) and resistant (RS) starch fractions for functional food applications. Heat‐moisture treated flour (HMTF) in the presence of citric, gallic, or vanillic acids and esterified flour (EF) with citric acid were prepared and analyzed for structure and functionality using in vitro starch digestibility, differential scanning calorimetry, Rapid Visco Analyzer, swelling factor (SF), amylose leaching (AML), optical microscopy, and Fourier transform infrared (FT‐IR) spectroscopy. Significant ( P < 0.05) increases in SDS and RS content of HMTF and EF were observed. Whereas the granule integrity and the birefringence were not affected by modification, the degree of crystalline order, which was determined by FT‐IR 1,047/1,022 cm −1 peak ratio, was decreased. Gelatinization enthalpies of modified flour were lower than that of native flour, whereas the gelatinization endotherms of HMTF were shifted to higher temperatures and those of EF to lower temperatures. Pasting properties were also affected greatly by both treatments. HMTF demonstrated reduced SF and AML, whereas EF had reduced SF and increased AML. Further, the extent of changes in the structure and functionality of HMTF depended on the type of acid utilized. Overall, heat‐moisture treatment with an organic acid and esterification were effective modifications to produce a pea flour ingredient with enhanced SDS and RS content.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here