Premium
Rheological Characterization of a New Oat Hydrocolloid and Its Application in Cake Baking
Author(s) -
Lee Suyong,
Kinney Mary P.,
Inglett George E.
Publication year - 2005
Publication title -
cereal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 100
eISSN - 1943-3638
pISSN - 0009-0352
DOI - 10.1094/cc-82-0717
Subject(s) - chemistry , rheology , food science , viscoelasticity , shear thinning , suspension (topology) , bran , glucan , raw material , composite material , organic chemistry , materials science , mathematics , homotopy , pure mathematics
A new oat hydrocolloid containing 20% β‐glucan, called C‐trim20, was obtained from oat bran concentrate through steam jet‐cooking and fractionations. The rheological characterization of the C‐trim20 was conducted using steady and dynamic shear measurements. The C‐trim20 suspension exhibited a shear‐thinning behavior that was more pronounced at high shear rates and high concentrations. Its dynamic viscoelastic moduli increased with increasing concentration while the frequency at which G ′ and G ″ crossover decreased. The C‐trim20 suspension at various concentrations followed the Cox‐Merz rule. C‐trim20 was also evaluated for potential use in baked products, specifically cakes. The baking performance of C‐trim20 was tested by incorporating it into cake formulations. The inclusion of this hydrocolloid gave increased elastic properties to cake batters and produced cakes containing 1 g of β‐glucan per serving with volume and textural properties similar to those of the control cake.