z-logo
open-access-imgOpen Access
Synonymous mutations and the molecular evolution of SARS-CoV-2 origins
Author(s) -
Hongru Wang,
Lenore Pipes,
Rasmus Nielsen
Publication year - 2020
Publication title -
virus evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.231
H-Index - 23
ISSN - 2057-1577
DOI - 10.1093/ve/veaa098
Subject(s) - recombination , biology , molecular evolution , natural selection , convergent evolution , divergence (linguistics) , covid-19 , evolutionary biology , genetics , mutation , coronavirus , silent mutation , amino acid , severe acute respiratory syndrome , gene , selection (genetic algorithm) , phylogenetics , linguistics , philosophy , missense mutation , artificial intelligence , computer science , medicine , disease , pathology , infectious disease (medical specialty)
Human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is most closely related, by average genetic distance, to two coronaviruses isolated from bats, RaTG13 and RmYN02. However, there is a segment of high amino acid similarity between human SARS-CoV-2 and a pangolin-isolated strain, GD410721, in the receptor-binding domain (RBD) of the spike protein, a pattern that can be caused by either recombination or by convergent amino acid evolution driven by natural selection. We perform a detailed analysis of the synonymous divergence, which is less likely to be affected by selection than amino acid divergence, between human SARS-CoV-2 and related strains. We show that the synonymous divergence between the bat-derived viruses and SARS-CoV-2 is larger than between GD410721 and SARS-CoV-2 in the RBD, providing strong additional support for the recombination hypothesis. However, the synonymous divergence between pangolin strain and SARS-CoV-2 is also relatively high, which is not consistent with a recent recombination between them, instead, it suggests a recombination into RaTG13. We also find a 14-fold increase in the d N / d S ratio from the lineage leading to SARS-CoV-2 to the strains of the current pandemic, suggesting that the vast majority of nonsynonymous mutations currently segregating within the human strains have a negative impact on viral fitness. Finally, we estimate that the time to the most recent common ancestor of SARS-CoV-2 and RaTG13 or RmYN02 based on synonymous divergence is 51.71 years (95% CI, 28.11–75.31) and 37.02 years (95% CI, 18.19–55.85), respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom