Open Access
Enhanced Quality Metrics for Assessing RNA Derived From Archival Formalin-Fixed Paraffin-Embedded Tissue Samples
Author(s) -
Leah C. Wehmas,
Charles E. Wood,
Brian N. Chorley,
Carole L. Yauk,
Garret B. Nelson,
Susan Hester
Publication year - 2019
Publication title -
toxicological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.352
H-Index - 183
eISSN - 1096-6080
pISSN - 1096-0929
DOI - 10.1093/toxsci/kfz113
Subject(s) - rna , biology , computational biology , rna extraction , gene expression , gene , microbiology and biotechnology , genetics
Formalin-fixed paraffin-embedded (FFPE) tissues provide an important resource for toxicogenomic research. However, variability in the integrity or quality of RNA obtained from archival FFPE specimens can lead to unreliable data and wasted resources, and standard protocols for measuring RNA integrity do not adequately assess the suitability of FFPE RNA. The main goal of this study was to identify improved methods for evaluating FFPE RNA quality for whole-genome sequencing. We examined RNA quality metrics conducted prior to RNA-sequencing in paired frozen and FFPE samples with varying levels of quality based on age in block and time in formalin. RNA quality was measured by the RNA integrity number (RIN), a modified RIN called the paraffin-embedded RNA metric, the percentage of RNA fragments >100-300 nucleotides in size (DV100-300), and 2 quantitative PCR-based methods. This information was correlated to sequencing read quality, mapping, and gene detection. Among fragmentation-based methods, DV and PCR-based metrics were more informative than RIN or paraffin-embedded RNA metric in determining sequencing success. Across low- and high-quality FFPE samples, a minimum of 80% of RNA fragments >100 nucleotides (DV100 > 80) provided the best indication of gene diversity and read counts upon sequencing. The PCR-based methods further showed quantitative reductions in amplifiable RNA of target genes related to sample age and time in formalin that inform input quantity of FFPE RNA for sequencing. These results should aid in screening and prioritizing archival FFPE samples for retrospective analyses of gene expression.