
Assessing Drug-Induced Long QT and Proarrhythmic Risk Using Human Stem-Cell-Derived Cardiomyocytes in a Ca2+ Imaging Assay: Evaluation of 28 CiPA Compounds at Three Test Sites
Author(s) -
Hua Lü,
Hongtao Zeng,
Ralf Kettenhofen,
Liang Guo,
Ivan Kopljar,
Karel Van Ammel,
Fetene Tekle,
Ard Teisman,
Jin Zhai,
Holly Clouse,
Jennifer Pierson,
Michael J. Furniss,
Armando Lagrutta,
Frederick Sannajust,
David J. Gallacher
Publication year - 2019
Publication title -
toxicological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.352
H-Index - 183
eISSN - 1096-6080
pISSN - 1096-0929
DOI - 10.1093/toxsci/kfz102
Subject(s) - proarrhythmia , afterdepolarization , pharmacology , in vitro , drug , cell culture , qt interval , in vitro toxicology , long qt syndrome , electrophysiology , chemistry , medicine , biophysics , biology , biochemistry , repolarization , genetics
The goal of this research consortium including Janssen, MSD, Ncardia, FNCR/LBR, and Health and Environmental Sciences Institute (HESI) was to evaluate the utility of an additional in vitro assay technology to detect potential drug-induced long QT and torsade de pointes (TdP) risk by monitoring cytosolic free Ca2+ transients in human stem-cell-derived cardiomyocytes (hSC-CMs). The potential proarrhythmic risks of the 28 comprehensive in vitro proarrhythmia assay (CiPA) drugs linked to low, intermediate, and high clinical TdP risk were evaluated in a blinded manner using Ca2+-sensitive fluorescent dye assay recorded from a kinetic plate reader system (Hamamatsu FDSS/µCell and FDSS7000) in 2D cultures of 2 commercially available hSC-CM lines (Cor.4U and CDI iCell Cardiomyocytes) at 3 different test sites. The Ca2+ transient assay, performed at the 3 sites using the 2 different hSC-CMs lines, correctly detected potential drug-induced QT prolongation among the 28 CiPA drugs and detected cellular arrhythmias-like/early afterdepolarization in 7 of 8 high TdP-risk drugs (87.5%), 6 of 11 intermediate TdP-risk drugs (54.5%), and 0 of 9 low/no TdP-risk drugs (0%). The results were comparable among the 3 sites and from 2 hSC-CM cell lines. The Ca2+ transient assay can serve as a user-friendly and higher throughput alternative to complement the microelectrode array and voltage-sensing optical action potential recording assays used in the HESI-CiPA study for in vitro assessment of drug-induced long QT and TdP risk.