z-logo
open-access-imgOpen Access
Distribution, Elimination, and Biopersistence to 90 Days of a Systemically Introduced 30 nm Ceria-Engineered Nanomaterial in Rats
Author(s) -
Robert A. Yokel,
Tu C. Au,
Robert C. MacPhail,
Sarita S. Hardas,
D. Allan Butterfield,
Rukhsana Sultana,
Michael Goodman,
Michael T. Tseng,
Dan Mo,
Hamed Haghnazar,
Jason M. Unrine,
Uschi M. Graham,
Peng Wu,
Eric A. Grulke
Publication year - 2012
Publication title -
toxicological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.352
H-Index - 183
eISSN - 1096-6080
pISSN - 1096-0929
DOI - 10.1093/toxsci/kfs067
Subject(s) - mononuclear phagocyte system , spleen , oxidative stress , cerium , chemistry , nanotoxicology , peripheral blood mononuclear cell , medicine , endocrinology , immunology , toxicity , biochemistry , inorganic chemistry , in vitro
Nanoceria is used as a catalyst in diesel fuel, as an abrasive in printed circuit manufacture, and is being pursued as an antioxidant therapeutic. Our objective is to extend previous findings showing that there were no reductions of cerium in organs of the mononuclear phagocyte (reticuloendothelial) system up to 30 days after a single nanoscale ceria administration. An ~5% aqueous dispersion of citrate-stabilized 30 nm ceria, synthesized and characterized in-house, or vehicle, was iv infused into rats terminated 1, 7, 30, or 90 days later. Cageside observations were obtained daily, body weight weekly. Daily urinary and fecal cerium outputs were quantified for 2 weeks. Nine organs were weighed and samples collected from 14 tissues/organs/systems, blood and cerebrospinal fluid for cerium determination. Histology and oxidative stress were assessed. Less than 1% of the nanoceria was excreted in the first 2 weeks, 98% in feces. Body weight gain was initially impaired. Spleen weight was significantly increased in some ceria-treated groups, associated with abnormalities. Ceria was primarily retained in the spleen, liver, and bone marrow. There was little decrease of ceria in any tissue over the 90 days. Granulomas were observed in the liver. Time-dependent oxidative stress changes were seen in the liver and spleen. Nanoscale ceria was persistently retained by organs of the mononuclear phagocyte system, associated with adverse changes. The results support concern about the long-term fate and adverse effects of inert nanoscale metal oxides that distribute throughout the body, are persistently retained, and produce adverse changes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom