Detection of Implausible Phylogenetic Inferences Using Posterior Predictive Assessment of Model Fit
Author(s) -
Jeremy M. Brown
Publication year - 2014
Publication title -
systematic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.128
H-Index - 182
eISSN - 1076-836X
pISSN - 1063-5157
DOI - 10.1093/sysbio/syu002
Subject(s) - biology , phylogenetic tree , evolutionary biology , statistics , phylogenetics , zoology , mathematics , genetics , gene
Systematic phylogenetic error caused by the simplifying assumptions made in models of molecular evolution may be impossible to avoid entirely when attempting to model evolution across massive, diverse data sets. However, not all deficiencies of inference models result in unreliable phylogenetic estimates. The field of phylogenetics lacks a direct method to identify cases where model specification adversely affects inferences. Posterior predictive simulation is a flexible and intuitive approach for assessing goodness-of-fit of the assumed model and priors in a Bayesian phylogenetic analysis. Here, I propose new test statistics for use in posterior predictive assessment of model fit. These test statistics compare phylogenetic inferences from posterior predictive data sets to inferences from the original data. A simulation study demonstrates the utility of these new statistics. The new tests reject the plausibility of inferred tree lengths or topologies more often when data/model combinations produce biased inferences. I also apply this approach to exemplar empirical data sets, highlighting the value of the novel assessments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom