z-logo
open-access-imgOpen Access
Comparing Partitioned Models to Mixture Models: Do Information Criteria Apply?
Author(s) -
Stephen Crotty,
Barbara R. Holland
Publication year - 2022
Publication title -
systematic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.128
H-Index - 182
eISSN - 1076-836X
pISSN - 1063-5157
DOI - 10.1093/sysbio/syac003
Subject(s) - model selection , mixture model , partition (number theory) , information criteria , phylogenetic tree , maximum likelihood , selection (genetic algorithm) , information theory , computer science , biology , artificial intelligence , econometrics , machine learning , statistics , mathematics , combinatorics , gene , biochemistry
The use of information criteria to distinguish between phylogenetic models has become ubiquitous within the field. However, the variety and complexity of available models are much greater now than when these practices were established. The literature shows an increasing trajectory of healthy skepticism with regard to the use of information theory-based model selection within phylogenetics. We add to this by analyzing the specific case of comparison between partition and mixture models. We argue from a theoretical basis that information criteria are inherently more likely to favor partition models over mixture models, and we then demonstrate this through simulation. Based on our findings, we suggest that partition and mixture models are not suitable for information-theory based model comparison. [AIC, BIC; information criteria; maximum likelihood; mixture models; partitioned model; phylogenetics.]

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom