Wilson–’t Hooft line operators as transfer matrices
Author(s) -
Kazunobu Maruyoshi
Publication year - 2021
Publication title -
progress of theoretical and experimental physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 53
ISSN - 2050-3911
DOI - 10.1093/ptep/ptab072
Subject(s) - physics , integrable system , mathematical physics , trigonometry , transfer (computing) , space (punctuation) , line (geometry) , operator (biology) , gauge theory , wilson loop , gauge (firearms) , pure mathematics , mathematical analysis , mathematics , geometry , history , linguistics , philosophy , biochemistry , chemistry , archaeology , repressor , parallel computing , computer science , transcription factor , gene
We review the relation between half-BPS Wilson–’t Hooft line operators in ${\mathcal{N}}=2$ supersymmetric gauge theories on the twisted space-time $S^1 \times_\epsilon \mathbb{R}^2 \times \mathbb{R}$ and the transfer matrices constructed from the trigonometric L-operators of an integrable system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom