z-logo
open-access-imgOpen Access
4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
Author(s) -
Yifang He,
Qianzhao Ji,
Zeming Wu,
Yusheng Cai,
Jian Yin,
Yiyuan Zhang,
Sheng Zhang,
Xiaoqian Liu,
Weiqi Zhang,
Guanghui Liu,
Si Wang,
Moshi Song,
Jing Qu
Publication year - 2022
Publication title -
protein and cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 63
eISSN - 1674-8018
pISSN - 1674-800X
DOI - 10.1093/procel/pwac037
Subject(s) - senescence , microbiology and biotechnology , stem cell , biology , mitochondrion , mesenchymal stem cell , ectopic expression , homeostasis , cell , cell culture , genetics
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here