z-logo
open-access-imgOpen Access
Catalytic promiscuity of rice 2-oxoglutarate/Fe(II)-dependent dioxygenases supports xenobiotic metabolism
Author(s) -
Natsuki Takamura,
Akihiko Yamazaki,
Nozomi Sakuma,
Sakiko Hirose,
Motonari Sakai,
Yukie Takani,
Satoshi Yamashita,
Masahiro Oshima,
Makoto Kuroki,
Yuzuru Tozawa
Publication year - 2021
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1093/plphys/kiab293
Subject(s) - biochemistry , hordeum vulgare , oryza sativa , dioxygenase , hydroxylation , enzyme , biology , mutant , chemistry , gene , botany , poaceae
The rice (Oryza sativa) 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenase HIS1 mediates the catalytic inactivation of five distinct β-triketone herbicides (bTHs). By assessing the effects of plant growth regulators on HIS1 enzyme function, we found that HIS1 mediates the hydroxylation of trinexapac-ethyl (TE) in the presence of Fe2+ and 2OG. TE blocks gibberellin biosynthesis, and we observed that its addition to culture medium induced growth retardation of rice seedlings in a concentration-dependent manner. Similar treatment with hydroxylated TE revealed that hydroxylation greatly attenuated the inhibitory effect of TE on plant growth. Forced expression of HIS1 in a rice his1 mutant also reduced its sensitivity to TE compared with that of the nontransformant. These results indicate that HIS1 metabolizes TE and thereby markedly reduces its ability to slow plant growth. Furthermore, analysis of five rice HIS1-like (HSL) proteins revealed that OsHSL2 and OsHSL4 also metabolize TE in vitro. HSLs from wheat (Triticum aestivum) and barley (Hordeum vulgare) also showed such activity. In contrast, OsHSL1, which shares the highest amino acid sequence identity with HIS1 and metabolizes the bTH tefuryltrione, did not manifest TE-metabolizing activity. Site-directed mutagenesis of OsHSL1 informed by structural models showed that substitution of three amino acids with the corresponding residues of HIS1 conferred TE-metabolizing activity similar to that of HIS1. Our results thus reveal a catalytic promiscuity of HIS1 and its related enzymes that support xenobiotic metabolism in plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom