z-logo
open-access-imgOpen Access
Respiratory and C4-photosynthetic NAD-malic enzyme coexist in bundle sheath cell mitochondria and evolved via association of differentially adapted subunits
Author(s) -
Meike Hüdig,
Marcos A. Tronconi,
Juan P. Zubimendi,
Tammy L. Sage,
Gereon Poschmann,
David Bickel,
Holger Gohlke,
Verónica G. Maurino
Publication year - 2021
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1093/plcell/koab265
Subject(s) - biology , malic enzyme , nad+ kinase , mitochondrion , biochemistry , photosynthesis , enzyme , respiratory system , botany , microbiology and biotechnology , anatomy , dehydrogenase
In plant mitochondria, nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) has a housekeeping function in malate respiration. In different plant lineages, NAD-ME was independently co-opted in C4 photosynthesis. In the C4 Cleome species, Gynandropsis gynandra and Cleome angustifolia, all NAD-ME genes (NAD-MEα, NAD-MEβ1, and NAD-MEβ2) were affected by C4 evolution and are expressed at higher levels than their orthologs in the C3 species Tarenaya hassleriana. In T. hassleriana, the NAD-ME housekeeping function is performed by two heteromers, NAD-MEα/β1 and NAD-MEα/β2, with similar biochemical properties. In both C4 species, this role is restricted to NAD-MEα/β2. In the C4 species, NAD-MEα/β1 is exclusively present in the leaves, where it accounts for most of the enzymatic activity. Gynandropsis gynandra NAD-MEα/β1 (GgNAD-MEα/β1) exhibits high catalytic efficiency and is differentially activated by the C4 intermediate aspartate, confirming its role as the C4-decarboxylase. During C4 evolution, NAD-MEβ1 lost its catalytic activity; its contribution to the enzymatic activity results from a stabilizing effect on the associated α-subunit and the acquisition of regulatory properties. We conclude that in bundle sheath cell mitochondria of C4 species, the functions of NAD-ME as C4 photosynthetic decarboxylase and as a housekeeping enzyme coexist and are performed by isoforms that combine the same α-subunit with differentially adapted β-subunits.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom