z-logo
open-access-imgOpen Access
Advances in Cell Wall Matrix Research with a Focus on Mixed-Linkage Glucan
Author(s) -
SangJin Kim,
Federica Brandizzí
Publication year - 2021
Publication title -
plant and cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.975
H-Index - 152
eISSN - 1471-9053
pISSN - 0032-0781
DOI - 10.1093/pcp/pcab106
Subject(s) - cell wall , enzyme , biochemistry , polysaccharide , cellulose , gene , biology , chemistry , microbiology and biotechnology
Mixed β(1,3;1,4)-linkage glucan (MLG) is commonly found in the monocot lineage, at particularly high levels in the Poaceae family, but also in the evolutionally distant genus, Equisetum. MLG has several properties that make it unique from other plant cell wall polysaccharides. It consists of β1,4-linked polymers of glucose interspersed with β1,3-linkages, but the presence of β1,3-linkages provides quite different physical properties compared to its closest form of the cell wall component, cellulose. The mechanisms of MLG biosynthesis have been investigated to understand whether single or multiple enzymes are required to build mixed linkages in the glucan chain. Currently, MLG synthesis by a single enzyme is supported by mutagenesis analyses of cellulose synthase-like F6, the major MLG synthase, but further investigation is needed to gather mechanistic insights. Because of transient accumulation of MLG in elongating cells and vegetative tissues, several hypotheses have been proposed to explain the role of MLG in the plant cell wall. Studies have been carried out to identify gene expression regulators during development and light cycles as well as enzymes involved in MLG organization in the cell wall. A role of MLG as a storage molecule in grains is evident, but the role of MLG in vegetative tissues is still not well understood. Characterization of a cell wall component is difficult due to the complex heterogeneity of the plant cell wall. However, as detailed in this review, recent exciting research has made significant impacts in the understanding of MLG biology in plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom