z-logo
open-access-imgOpen Access
Ignoramus, Ignorabimus? On Uncertainty in Ecological Inference
Author(s) -
Martin Elff,
Thomas Gschwend,
Ron Johnston
Publication year - 2007
Publication title -
political analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.953
H-Index - 69
eISSN - 1476-4989
pISSN - 1047-1987
DOI - 10.1093/pan/mpm030
Subject(s) - unavailability , inference , voting , computer science , econometrics , principle of maximum entropy , ticket , entropy (arrow of time) , statistics , data mining , mathematics , artificial intelligence , physics , computer security , quantum mechanics , politics , political science , law
"Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimates and predictions. The amount of bias, however, cannot be assessed without information that is unavailable in typical applications of EI. We therefore construct a model that at least approximately accounts for the additional, nonsampling error that may result from possible bias incurred by an EI procedure, a model that builds on the Principle of Maximum Entropy. By means of a systematic simulation experiment, we examine the performance of prediction intervals based on this second-stage Maximum Entropy model. The results of this simulation study suggest that these prediction intervals are at least approximately correct if all possible configurations of the unknown data are taken into account. Finally, we apply our method to a real-world example, where we actually know the true values and are able to assess the performance of our method: the prediction of district-level percentages of split-ticket voting in the 1996 General Election of New Zealand. It turns out that in 95.5% of the New Zealand voting districts, the actual percentage of split-ticket votes lies inside the 95% prediction intervals constructed by our method." (author's abstract

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom