z-logo
open-access-imgOpen Access
An accurate single descriptor for ion–π interactions
Author(s) -
Zhangyun Liu,
Zheng Chen,
Jinyang Xi,
Xin Xu
Publication year - 2020
Publication title -
national science review/national science review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.433
H-Index - 54
eISSN - 2095-5138
pISSN - 2053-714X
DOI - 10.1093/nsr/nwaa051
Subject(s) - ion , set (abstract data type) , computer science , electrostatics , nanotechnology , chemical physics , biological system , chemistry , physics , materials science , quantum mechanics , biology , programming language
Non-covalent interactions between ions and π systems play an important role in molecular recognition, catalysis and biology. To guide the screen and design for artificial hosts, catalysts and drug delivery, understanding the physical nature of ion-π complexes via descriptors is indispensable. However, even with multiple descriptors that contain the leading term of electrostatic and polarized interactions, the quantitative description for the binding energies (BEs) of ion-π complexes is still lacking because of the intrinsic shortcomings of the commonly used descriptors. Here, we have shown that the impartment of orbital details into the electrostatic energy (coined as OEE) makes an excellent single descriptor for BEs of not only spherical, but also multiply-shaped, ion-π systems, highlighting the importance of an accurate description of the electrostatic interactions. Our results have further demonstrated that OEEs from a low-level method could be calibrated to BEs from a high-level method, offering a powerful practical strategy for an accurate prediction of a set of ion-π interactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here