
Machine Learning-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights Into Poor Outcomes After Aneurysmal Subarachnoid Hemorrhage
Author(s) -
Matthew J. Koch,
Animesh Acharjee,
Zsuzsanna Ament,
Riana Schleicher,
Matthew B Bevers,
Christopher J. Stapleton,
Aman B. Patel,
W. Taylor Kimberly
Publication year - 2021
Publication title -
neurosurgery/neurosurgery online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.455
H-Index - 198
eISSN - 1081-1281
pISSN - 0148-396X
DOI - 10.1093/neuros/nyaa557
Subject(s) - medicine , subarachnoid hemorrhage , modified rankin scale , cerebrospinal fluid , external ventricular drain , neurointensive care , metabolomics , gastroenterology , anesthesia , bioinformatics , ischemia , ischemic stroke , biology
Aneurysmal subarachnoid hemorrhage (aSAH) is associated with a high mortality and poor neurologic outcomes. The biologic underpinnings of the morbidity and mortality associated with aSAH remain poorly understood.