z-logo
open-access-imgOpen Access
Enhancer modeling uncovers transcriptional signatures of individual cardiac cell states in Drosophila
Author(s) -
Brian W. Busser,
Julian Haimovich,
Di Huang,
Ivan Ovcharenko,
Alan M. Michelson
Publication year - 2015
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkv011
Subject(s) - enhancer , biology , chromatin , transcription factor , computational biology , gene , genetics , enhancer rnas , cell type , histone , regulation of gene expression , gene expression , cell
Here we used discriminative training methods to uncover the chromatin, transcription factor (TF) binding and sequence features of enhancers underlying gene expression in individual cardiac cells. We used machine learning with TF motifs and ChIP data for a core set of cardiogenic TFs and histone modifications to classify Drosophila cell-type-specific cardiac enhancer activity. We show that the classifier models can be used to predict cardiac cell subtype cis-regulatory activities. Associating the predicted enhancers with an expression atlas of cardiac genes further uncovered clusters of genes with transcription and function limited to individual cardiac cell subtypes. Further, the cell-specific enhancer models revealed chromatin, TF binding and sequence features that distinguish enhancer activities in distinct subsets of heart cells. Collectively, our results show that computational modeling combined with empirical testing provides a powerful platform to uncover the enhancers, TF motifs and gene expression profiles which characterize individual cardiac cell fates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here