
Antisense-mediated repression of SAGA-dependent genes involves the HIR histone chaperone
Author(s) -
Julien Soudet,
Nissrine Beyrouthy,
Anna Marta Pastucha,
Andrea Maffioletti,
Dario Menéndez,
Zahra Bakir,
Françoise Stutz
Publication year - 2022
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkac264
Subject(s) - biology , psychological repression , chaperone (clinical) , histone , genetics , gene , microbiology and biotechnology , gene expression , medicine , pathology
Eukaryotic genomes are pervasively transcribed by RNA polymerase II (RNAPII), and transcription of long non-coding RNAs often overlaps with coding gene promoters. This might lead to coding gene repression in a process named Transcription Interference (TI). In Saccharomyces cerevisiae, TI is mainly driven by antisense non-coding transcription and occurs through re-shaping of promoter Nucleosome-Depleted Regions (NDRs). In this study, we developed a genetic screen to identify new players involved in Antisense-Mediated Transcription Interference (AMTI). Among the candidates, we found the HIR histone chaperone complex known to be involved in de novo histone deposition. Using genome-wide approaches, we reveal that HIR-dependent histone deposition represses the promoters of SAGA-dependent genes via antisense non-coding transcription. However, while antisense transcription is enriched at promoters of SAGA-dependent genes, this feature is not sufficient to define the mode of gene regulation. We further show that the balance between HIR-dependent nucleosome incorporation and transcription factor binding at promoters directs transcription into a SAGA- or TFIID-dependent regulation. This study sheds light on a new connection between antisense non-coding transcription and the nature of coding transcription initiation.