z-logo
open-access-imgOpen Access
Genetic code degeneracy is established by the decoding center of the ribosome
Author(s) -
Shixin Ye,
J. Lehmann
Publication year - 2022
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkac171
Subject(s) - degeneracy (biology) , genetic code , biology , ribosome , decoding methods , translation (biology) , genetics , computational biology , dna , algorithm , gene , rna , computer science , messenger rna
The degeneracy of the genetic code confers a wide array of properties to coding sequences. Yet, its origin is still unclear. A structural analysis has shown that the stability of the Watson–Crick base pair at the second position of the anticodon–codon interaction is a critical parameter controlling the extent of non-specific pairings accepted at the third position by the ribosome, a flexibility at the root of degeneracy. Based on recent cryo-EM analyses, the present work shows that residue A1493 of the decoding center provides a significant contribution to the stability of this base pair, revealing that the ribosome is directly involved in the establishment of degeneracy. Building on existing evolutionary models, we show the evidence that the early appearance of A1493 and A1492 established the basis of degeneracy when an elementary kinetic scheme of translation was prevailing. Logical considerations on the expansion of this kinetic scheme indicate that the acquisition of the peptidyl transferase center was the next major evolutionary step, while the induced-fit mechanism, that enables a sharp selection of the tRNAs, necessarily arose later when G530 was acquired by the decoding center.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here