z-logo
open-access-imgOpen Access
Allostery of DNA nanostructures controlled by enzymatic modifications
Author(s) -
Qi Yan,
Yaqi Wang,
Jile Shi,
Bryan Wei
Publication year - 2020
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkaa488
Subject(s) - biology , dna , enzyme , allosteric regulation , computational biology , genetics , biochemistry , biophysics
Allostery is comprehensively studied for natural macromolecules, such as proteins and nucleic acids. Here, we present controllable allostery of synthetic DNA nanostructure-enzyme systems. Rational designs of the synthetic allosteric systems are based on an in-depth understanding of allosteric sites with several types of strand placements, whose varying stacking strengths determine the local conformation and ultimately lead to a gradient level of allosteric transition. When enzymes in a molecular cloning toolbox such as DNA polymerase, exonuclease and ligase are applied to treat the allosteric sites, the resulting local conformational changes propagate through the entire structure for a global allosteric transition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom