
On-target activity predictions enable improved CRISPR–dCas9 screens in bacteria
Author(s) -
Alicia CalvoVillamañán,
Jérôme Wong Ng,
Rémi Planel,
Hervé Ménager,
Arthur Chen,
Lun Cui,
David Bikard
Publication year - 2020
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkaa294
Subject(s) - crispr , biology , cas9 , guide rna , computational biology , function (biology) , block (permutation group theory) , rna , gene , computer science , genetics , geometry , mathematics
The ability to block gene expression in bacteria with the catalytically inactive mutant of Cas9, known as dCas9, is quickly becoming a standard methodology to probe gene function, perform high-throughput screens, and engineer cells for desired purposes. Yet, we still lack a good understanding of the design rules that determine on-target activity for dCas9. Taking advantage of high-throughput screening data, we fit a model to predict the ability of dCas9 to block the RNA polymerase based on the target sequence, and validate its performance on independently generated datasets. We further design a novel genome wide guide RNA library for E. coli MG1655, EcoWG1, using our model to choose guides with high activity while avoiding guides which might be toxic or have off-target effects. A screen performed using the EcoWG1 library during growth in rich medium improved upon previously published screens, demonstrating that very good performances can be attained using only a small number of well designed guides. Being able to design effective, smaller libraries will help make CRISPRi screens even easier to perform and more cost-effective. Our model and materials are available to the community through crispr.pasteur.fr and Addgene.