z-logo
open-access-imgOpen Access
Purified bacteriophage λ O protein binds to four repeating sequences at the λ replication origin
Author(s) -
Toshiki Tsurimoto,
Kenichi Matsubara
Publication year - 1981
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/9.8.1789
Subject(s) - biology , bacteriophage , replication (statistics) , dna replication , dna binding protein , genetics , dna , microbiology and biotechnology , virology , gene , escherichia coli , transcription factor
The bacteriophage lambda O protein is needed for initiation of lambda DNA replication. Several lines of evidence suggest that initiation requires that this protein interacts with a specific sequence called ori (for origin) in lambda DNA. We have purified this protein to near homogeneity and studied the protection against nuclease cleavage of the origin DNA sequences. Our data demonstrate that the O protein binds within an interval of about 95 base pairs (bp), which contains four tandemly arranged 19bp repeating sequences, ATCCCTCAAAACGA (G)GG GAT(A). At a low concentration of O protein, the inner two repeats are primarily covered, while binding to the outer two repeats requires a high concentration of O protein. From the molecular size of O protein (32,000 daltons), and the internal symmetry in each 19bp repeat, we inferred that the O protein may bind in dimeric form, and that the 95bp region may be filled only when four such dimers have bound. This interaction is discussed in connection with the "activation" of the ori by O protein leading to initiation of DNA synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom