
Coding region deletions associated with the major form of rDNA interruption in Drosophila melanogaster
Author(s) -
Peter M. M. Rae
Publication year - 1981
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/9.19.4997
Subject(s) - biology , transposable element , genetics , ribosomal dna , drosophila melanogaster , coding region , homology (biology) , ribosomal rna , melanogaster , drosophila virilis , insertion sequence , restriction map , p element , inverted repeat , nucleic acid sequence , microbiology and biotechnology , gene , genome , phylogenetics
The nucleotide sequences at and around the termini of 5 kb type 1 interruptions in three separate clones of D. melanogaster rDNA repeats have been determined, and have been compared with the sequence of the corresponding region of an insertion-free rDNA repeat. All three interrupted rDNA repeats contain a small deletion of 28S rRNA coding material at the left coding/insertion sequence junction. A second deletion was found in one of the three clones, ad other aberrations were suggested by the results of restriction enzyme digestions of unfractionated rDNA. The termini of 5 kb type 1 rDNA insertions in D. melanogaster were also compared with the corresponding regions of 28S rDNA interruptions in D. virilis: the insertion site is identical in the two species, but the termini of the two species' interruptions show no homology. I sequenced a 1.1 kb region of the 5 kb type 1 D. melanogaster rDNA interruption that covers the sequences of the 1 kb and 0.5 kb insertions. There is 98% homology between the rightmost 1 kb of the 5 kb interruption and the sequences of the shorter insertions. Data suggest that Drosophila rDNA interruptions arose as a transposable element, and that divergence had included length alterations generated by unequal crossing over.