z-logo
open-access-imgOpen Access
Shotgun DNA sequencing using cloned DNase I-generated fragments
Author(s) -
Stephen K. Anderson
Publication year - 1981
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/9.13.3015
Subject(s) - biology , ecori , library , restriction enzyme , genetics , genomic library , shotgun sequencing , dna , nucleic acid sequence , microbiology and biotechnology , contig , dna sequencing , sequencing by ligation , restriction fragment , sequence (biology) , genome , gene , base sequence , 16s ribosomal rna
A method for DNA sequencing has been developed that utilises libraries of cloned randomly-fragmented DNA. The DNA to be sequenced is first subjected to limit attach by a non-specific endonuclease (DNase I in the presence of Mn++), fractionated by size and cloned in a single-stranded phage vector. Clones are then picked at random and used to provide a template for sequencing by the dideoxynucleotide chain termination method. This technique was used to sequence completely a 4257 bp EcoRI fragment of bovine mitochondrial DNA. The cloned fragments were evenly distributed with respect to the EcoRI fragment, and completion of the entire sequence required the construction of only a single library. In general, once a clone library has been prepared, the speed of this approach (greater than 1000 nucleotides of randomly selected sequence per day) is limited mainly by the rate at which the data can be processed. Because the clones are selected randomly, however, the average amount of new sequence information per clone is substantially diminished as the sequence near completion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom