z-logo
open-access-imgOpen Access
The glutamyl-tRNA synthetase of Escherichia coil: substrate-induced protection against its thermal inactivation
Author(s) -
Daniel Kern,
Jacques Lapointe
Publication year - 1979
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/7.2.501
Subject(s) - escherichia coli , transfer rna , substrate (aquarium) , biology , escherichia , library science , microbiology and biotechnology , biochemistry , rna , computer science , gene , ecology
The substrates-induced protection against the heat-inactivation of the glutamyl-tRNA synthetase has been investigated. tRNAGlu and ATP protect efficiently the enzyme, whereas glutamate does not. In the presence of tRNAGlu, glutamate induces an additional protection to that given by the tRNAGlu alone. A weak synergism was observed between ATP and tRNAGlu, whereas no synergism was detected between ATP and glutamate. These results suggest that tRNAGlu and ATP, but not glutamate are able to bind to the free enzyme form; glutamate binds only to the Enzyme.tRNAGlu and to the Enzyme.tRNAGlu.ATP complexes. The presence of the three substrates induces a higher stabilization of the enzyme than that expected from the protection observed for the various other substrates combinations, suggesting the existence of a marked synergism between the three substrates against the heat-inactivation of the enzyme. The protection constants determined from this study are similar to the dissociation constants determined by direct binding experiments and to the Km values determined kinetically.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here