Open Access
Aberrant pre-mRNA maturation is caused by LINE insertions into introns of thewhitegene ofDrosophila melanogaster
Author(s) -
Olivier Lajoinie,
Marie Drake,
B. Dastugue,
Chantal Vaury
Publication year - 1995
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/23.20.4015
Subject(s) - biology , drosophila melanogaster , intron , gene , genetics , white (mutation) , melanogaster , rna splicing , gene expression , drosophilidae , messenger rna , drosophila (subgenus) , microbiology and biotechnology , rna
Insertional mutagenesis screens have provided thousands of mutant alleles for analysing genes of varied functions in Drosophila melanogaster. We here document mechanisms of insertional mutagenesis by a LINE element, the I factor, by determining the molecular structure of RNAs produced from two alleles of the white gene of D.melanogaster, wIR1 and wIR6. These alleles result from insertion of the I factor into introns of the gene. We show that sequences present within the element direct aberrant splicing and termination events. When the I factor is inserted within the white first intron it may lead to the use of a cryptic 3' splice site which does not contain the dinucleotide AG. This splicing gives rise to a chimeric messenger RNA whose synthesis is controlled differently in tissues where the mutated gene is expressed. When the I factor is inserted within the white last intron it induces synthesis of truncated mRNAs. These results provide, for the first time, mechanisms for I factor insertional mutagenesis. They are discussed in the more general context of RNA processing in Drosophila and the evolution of eukaryotic gene introns.