z-logo
open-access-imgOpen Access
Evidence for a group II intron inEscherichia coliinserted into a highly conserved reading frame associated with mobile DNA sequences
Author(s) -
Volker Knoop,
Axel Brennicke
Publication year - 1994
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/22.7.1167
Subject(s) - biology , intron , group ii intron , genetics , open reading frame , rna splicing , group i catalytic intron , conserved sequence , plasmid , rna , dna , gene , peptide sequence , base sequence
The distribution of group II introns in the living world is an important aspect of the hypothesis which postulates their evolutionary relation to the nuclear spliceosome. As an alternative to the restricted experimental approaches towards their identification we devised a strategy to recognize group II introns in sequence data. By this approach we identified a locus on a plasmid in the bacterium Escherichia coli. Modelling of the derived RNA secondary structure reveals the presence of perfectly conserved domains V and VI as typical features of group II introns. An intron internal reading frame upstream of domain V is homologous to group II intron encoded maturases. A reading frame downstream of the predicted 3'-splice site is highly similar to a small polypeptide encoded in the central part of the Agrobacterium tumefaciens T-DNA. With the TBLASTN algorithm a set of plasmid-borne insertion sequences in Agrobacteria and Rhizobia and surprisingly also in a Yersinia pseudotuberculosis strain was identified which contain this highly conserved reading frame.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom