
Editing function ofEscherichia coli cysteinyl-tRNA synthetase: cyclization of cysteine to cysteine thiolactone
Author(s) -
Hieronim Jakubowski
Publication year - 1994
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/22.7.1155
Subject(s) - cysteine , transfer rna , amino acyl trna synthetases , biology , biochemistry , aminoacylation , thiolactone , aminoacyl trna synthetase , enzyme , adenylylation , amino acid , cysteine metabolism , biosynthesis , stereochemistry , chemistry , rna , gene
A cyclic sulfur compound, identified as cysteine thiolactone by several chemical and enzymatic tests, is formed from cysteine during in vitro tRNA(Cys) aminoacylation catalyzed by Escherichia coli cysteinyl-tRNA synthetase. The mechanism of cysteine thiolactone formation involves enzymatic deacylation of Cys-tRNA(Cys) (k = 0.017 s-1) in which nucleophilic sulfur of the side chain of cysteine in Cys-tRNA(Cys) attacks its carboxyl carbon to yield cysteine thiolactone. Nonenzymatic deacylation of Cys-tRNA(Cys) (k = 0.0006 s-1) yields cysteine, as expected. Inhibition of enzymatic deacylation of Cys-tRNA(Cys) by cysteine and Cys-AMP, but not by ATP, indicates that both synthesis of Cys-tRNA(Cys) and cyclization of cysteine to the thiolactone occur in a single active site of the enzyme. The cyclization of cysteine is mechanistically similar to the editing reactions of methionyl-tRNA synthetase. However, in contrast to methionyl-tRNA synthetase which needs the editing function to reject misactivated homocysteine, cysteinyl-tRNA synthetase is highly selective and is not faced with a problem in rejecting noncognate amino acids. Despite this, the present day cysteinyl-tRNA synthetase, like methionyl-tRNA synthetase, still retains an editing activity toward the cognate product, the charged tRNA. This function may be a remnant of a chemistry used by an ancestral cysteinyl-tRNA synthetase.