Radiolytic signature of Z-DNA
Author(s) -
Laurence Tartier,
V. Michalik,
M. Spotheim-Maurizot,
A. Rachid Rahmouni,
R. Sabattier,
Michel Charlier
Publication year - 1994
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/22.25.5565
Subject(s) - guanine , biology , dna , plasmid , radiolysis , hydroxyl radical , base pair , microbiology and biotechnology , ionizing radiation , biophysics , dna damage , biochemistry , nucleotide , physics , irradiation , radical , gene , nuclear physics
Ionizing radiations induce various damages in DNA via the hydroxyl radical OH. generated by the radiolysis of water. We compare here the radiosensitivity of B- and Z-DNA, by using a Z-prone stretch included in a plasmid. In the supercoiled plasmid, the stretch is in the Z-form, whereas it is in the B-form when the plasmid is relaxed. Frank strand breaks (FSB) and alkali-revealed breaks (ARB) were located and quantified using sequencing gel electrophoresis. We show that B- and Z-DNA have the same mean sensitivity towards radiolytic attack, for both FSB and ARB. Nevertheless, the guanine sites are more sensitive, and the cytosine sites less sensitive in Z- than in B-DNA, leading to a characteristic signature of the Z-form. The comparison of experiments with the outcome of a Monte Carlo simulation of OH. radical attack suggests that transfer of initial damage from a guanine base to its attached sugar or the adjacent 3' cytosine is more important in Z-DNA than in B-DNA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom